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In Reference 1, a model for the sloshing modes was proposed.    The purpose of the 
present note is to call attention to certain features which lend credence to this model 
and to indicate the necessary modification in baffle damping theory. 

As in Reference 1, consider a simple pendulum of mass, m. , and length 1. , which is 
rotating about the gravity vector, g, with an angular velocity, w, at an angle, O-, with 
respect to the gravity vector.    Then   the kinetic energy of rotation is given by: 

E = (1/2) m.w2!^   sin2 0 (1) 

To determine 0, we equate the moment due to centrifugal force to the moment due to 
gravity and obtain: 

cos 0 s g/h)   1. (2) 

Using equation (2) to replace sin   0 in equation (1),  we obtain: 

m'        2,2,, 2,4,2, E = y-    W     1 .   (1   - g  /W     1 j ) (3) 
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Now the kinetic energy cannot be negative, 
it is necessary that: 

so that for rotational motion to be possible 

u^g/lj (4) 

But     g/1. is the natural frequency w,.   of a simple pendulum,   so we conclude that ro- 
tational motion cannot exist below tl.is frequency.    This fact has been observed in 
sloshing experiments. 

More generally,  the motion is represented by a set of pendulums so that equation (3) 
becomes: 

oo m 

i = 1 

i        2    2 .2.. 2,  4 .4 .2. 
—    1    U)     1. (1   - g   /w    i    1. ) (5) 

Now for u    <    g/1      a'l of the terms in the series will be negative so that the con- 
clusion deduced from the inequality (4) still holds.   The threshold for rotational mo- 
tion is given by the root of the equation: 

I 
-BO- .2 .2 m. I.   i 

i   i 2/  4 .4 ,2 ( 1 - g  /w    i    1.   ) = 0; namely w = 
r (mj g2/.2) 1/4 

(6) 

We turn now to some fluid dynamical considerations.    In References 2 and 3.  a po- 
tential function was derived for linear,   uncoupled sloshing of an ideal fluid.    We shall 
now show how the theory of these references may be extended to include circular mo- 
tion,  which,  however,   still maintains the curl of the velocity as zero,  except along 
one line.    This is an important point,   since,  by a theorem of Helmholtz,  if the curl 
of the velocity is zero at any time in an ideal fluid,  it will be zero forever.    Now it 
has been observed that it is possible to set up rotary sloshing in water without any 
initial circulation,  and since water should behave essentially like perfect fluid under 
the test conditions,  it should be possible to explain the rotary sloshing phenomenon 
essentially in terms of perfect fluid theory. 

We consider the case of a cylindrical tank and assume the motion to be made up of 
two sloshing waves oriented at right angles and a two-dimensional vorttx centered 
around the axis of the tank.    The potential function for this motion is given by: 
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i = 1 
(A. sinh k. z + B. coth k. z) cot 6 (7) 

+ (C. linh k. z 4 O. cosh k. z) sin 6 x   i j i i    ' 

+ (V + z) ß    r COB 9 -(Y + z) ßv r ■in 6 
y * 

Where r,  6,  z are circular cylindrical coordinates, K is constant in both space and 
time,  and ß and y have the same significance as in Reference 3.    Now the satisfaction 
of the boundary conditions at the radial wall,  r = R, at the free surface,  a * 0, and at 
the tank bottom z = -h does not involve the vortex term, KO,  since this contributes 
only a tangential velocity component and, for an ideal fluid,  the boundary conditions 
are expressed only in terms of normal velocity components.    Therefore,  the relations 
between the sloshing amplitude constants and the corresponding driving acceleration 
constants are the same as derived in Reference 3, namely: 

4R 

/k. + s (sinh k. h)/2 

(k^   R    - i) Jj (k. R) cosh k. h s    + k. A    tanh k. 
i     z ^ 

(8) 

4R 
+ s A (cosh k. h)/2 

TTZ (k   R    -DJ, (k. R) cosh k. h    j s    + k. A    ta x   i 1  '   i il i     z 

-MA 
nh k. hi 

(9) 

(We have changed the notation slightly from Reference 3 to conform with that of 
Reference 2.)       It should be noted that A ,   A ,   ft  ,  and ß    contain contributions 

X V        X V from the nonlinear cross-coupling terms. ' ' 

Now, although equation (7) contains sufficient features to explain the phenomenon of 
rotary sloshing, the velocity associated with the vortex becomes infinite for r » 0. 
When integrated over the volume of the fluid,  this would lead to infinite energy.    To 
overcome this defect,  we must recognize that the actual fluid cannot be entirely curl- 
free,  and introduce a rankine-combined vortex through the following stream function: 

for r ^ a 

for r ^ a 

(10) 

(ID 



GM45. 3-42J 

Page 4 . 

This function yields the same velocity in the 6-direction as the vortex potential, kö, 
(with a proper choice of K),  for r y a.,  namely: 

ve=   -sa^/Zr (12) 

For r /  a,  the velocity in the 6-direction is given by: 

ve=    '.ir/Z (13) 

No velocity terms are contributed by TU to either the r or z-directions. 

The equations (10) and (11) contain two constants,  the vortex strength, T^ ,  and the 
vortex filament radius,  a.    These constants may be chosen so that the rotational 
energy and angular momentum associated with the vortex motion equal the corres- 
ponding quantities for the rotating conical pendulums.    The energy of the pendulums 
has already been given in equation (5). 

The angular momentum to be associated with the vortex motion is: 

Hp=uZl    m.lf   (1 -g2/lf i4»4) (14) 

The corresponding quantities, as obtained from the fluid stream function 11 ,  are: 

Ef = JLir-      ^2a4(l/4 + ln|-) (15) 

2     R2        a2 

Hf = Zirph ^a    (i£ j-) (16) 

Equating E    to E,. and H    to H,,  and eliminating r leads to: 

2        2 
IniL =   ^ph(2R    -a   )     _1/4 (17) 

8 /   1 (m. 1.   - m. g   /w    i    ) 
< _  i      ii i e ' 

From Reference 1,  the summations are obtained as: 

.2 „5 

4 ^tm   l^   = irrpR3   > \     \      >     7  <18) 
i = 1      1   ' / k^ R^ (k^ R    - 1) tanh ^ h 



GM45. 3-423 

P»ge 5. 

tanh k. h 
 i  

S k. R (k^ RZ - 11 
i      '  i 

(19) 

If k. h   is greater than 1.84,  these can be approximated to within 5% by: 

m. I2   = .426 pR5 (20) 

m. = 1.44pR3 (21) 
"7^ 

This corresponds to tanks in which the liquid level exceeds the tank radius     If we     , 
substitute equations (20) and (21) into equation (17) and neglect a^ with respect to 2R , 
we obtain: 

a/R-1.28   e-3.7h/R(l-3.4g2/u
4R2) (22) 

The smallness of a/R, as given by equation (21) for h ^ R,  justifies the neglect of a  . 
Using equations (5), (15),  and (22),  we obtain for «£ : 

^=35.6W(R/h)(l-3.4g
2/u.4R2)   e^ 4h/R (1 - 3. 4 g2/w

4 R2) {n) 

The solution for a and ^ for those cases in which the approximation given by equation 
(20) does not hold, while more complicated,  presents no theoretical difficulty,  pro- 
vided the liquid level, h,  is not too low.    For,  in that event,   the quantity 

OP 

t m. 1. 
r^t    1 1 

goes to infinity from equation (18),  and the energy, E  , given by equation (5) would also 
be infinite for any finite u.    From equation (2),  we see that 9 approaches n/2 under the 
circumstances,  and we may conclude that the reason for the breakdown of the theory is 
that the assumption of small oscillations, which was made in order to satisfy the free 
surface boundary condition,  has been violated. 

We may note that the form of the pressure equation, as derived in Reference 3.  is un- 
changed by the inclusion of the vortex term.    This is because in the linearized pressure 
equation it is only the partial derivative of the velocity with respect to time which enters 
and the vortex term is assumed to be independent of time.    However,   the vortex will 
undoubtedly make a significant contribution to the non-linear pressure equation which 
we include here for completeness. 

p/p = d0/O t -* 1 -q<d/2      -;      .  (Txv-ö) (24) 
■f- 

7=xr+yj    +(.'+;:)£;      v     =  instantaneous anpular veiocuv vector 
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Here,  as in Reference 3,£\  i« the potential of external accelerations, and q is the 
total velocity amplitude. 

Finally,  we turn to the question of damping by horizontal ring baffles.    In Reference 4, 
an expression was derived for the mean rate of dissipation of energy.    In the notation 
of that reference,  the expression is: 

W - -HM SCD L^ f(-d) 3  .  4   .2 
{T7) (25) 

The damping ratio was taken as: 

..   _.-i 3r y =  -U wE)        -ß- (2b) 

The total energy was given by 

E = (l/4)p gS 1 -(kR -2 

For the case in which vortex motion is present, we may still use equation (26) for 
the damping of a ring baffle provided we replace £ by the total energy E_,  including 
that in the vortex as given by equation (15),  namely 

(27) 

ET = E + Ef (28) 

Since E_ is always greater than E,  it is apparent that the damping due to a horizontal 
ring baffle will be less in the presence of rotary sloshing than in its absence.    How- 
ever,  if we were to include vertical baffles so that the damping in equation (2b) was 
related to 

ST. 
dt 

instead of 

IE. 

the damping could be increased. 
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In clcsing,  we emphasize that the theory presented here is an extrapolation from linear 
theory which must be checked by experiment before it can be accepted finally.    It is a 
complete theory in that no constants are left to be determined empirically and it affords 
many opportunities for experimental verification.    These include the calculation of wave 
heights,   fluid pressures,  forces,  moments,   and effectivity of various baffle configura- 
tions,  all of which can also be obtained experimentally.    The inclusion of the vortex 
term, while not necessary for explaining a rotating line of nodes,  provides a means of 
carrying angular momentum which is not present in pure wave theory,   since in the latter 
case the fluid particles do not actually move in circular trajectories.    As a consequence, 
centrifugal force cannot be present in pure wave theory and this should provide a further 
criterion for the validity of the vortex term.    The need for some sort of term to carry 
angular momentum arises through the equivalence of tank and inertial coordinates for 
describing the motion of the fluid.    If we accelerate the tank in the x • direction,   for 
example,  when the wave happens to be maximum in the y - direction,   then we may 
equally well assume the tank stationary and the fluid moving.    The direction of motion 
of the off-center fluid mass will be deflected by the curved wall of the tank and converted 
to angular momentum.    By the momentum principle,  this will result in a force on the 
tank wall. 

Further theoretical studies are continuing. 

g(g    ßjBA&f 
R.  R. Berlot 

RRBifrh 
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